

ESAJECT ESA Ejection System

1999 Shuttle Small Payloads Symposium

September 13 -15, 1999

U.S. Naval Academy Annapolis, Maryland

Verhaert Design and Development nv

Hogenakkerhoekstraat 9

B 9150 Kruibeke

Belgium

Jo Bermyn

Business Unit Manager Satellites and Platforms

Tel: + 32 3 250 14 14 Fax: + 32 3 253 14 64

jo.bermyn@verhaert.com

Esaject

Introduction

ESA Ejection System

- **Ejection** or **jettison** of small payloads from the Hitchhiker Bridge
- System is developed under ESA's Technology Demonstration Program
- First flight for the ejection of the satellite Sloshsat, as part of the Hitchhiker TAS-03 mission

Introduction

Main Safety Features

- Equipped with a "jamming free" power and data transfer system.
- No guiding system
- Single-failure tolerant system
- Can be used as "safety backup" device to jettison failed payloads (e.g. blocked robotic arm
- Firing circuit protected with three independent inhibits to prevent unintentional firing of the system
- Remotely activated by the flight crew from the Standard Switch Panel (SSP) on the orbiter Aft Flight Deck (AFD).
- System can be equipped with a **battery** to be independent of the orbiter power supplies (**option** not further developed in Esaject)

Introduction

Main design drivers

- Ejection and Jettison function (use as safety backup device)
- Single-failure tolerant against refusing to fire (ejection)
- Two-failure tolerant in combination with payload in jettison case (first failure on payload)
- Two-failure tolerant against unintentional firing
- Prevent inadvertent ejection with a minimum of three independent inhibits
- May not be initiated from ground
- Design-Lifetime three missions
- Ejection of payloads from 50 150 kg with a nominal ejection velocity of 0,8 m/s (min 0,3 m/s)
- Battery pack (development not part of actual contract) can be provided to be independent from Orbiter power for ejection/jettison

System Description

System Description

Mechanical

- Main Structure
- Payload Interface Structure
- Outer cover
- Ejection Spring assy
- Marman Clampband
- Separation Bolt
- Retraction / Retention System
- Debris Capture Device

Electrical

- Electronic Box
- Power and Data Transfer System
- Pyrotechnic Firing Circuit

Structures

Main Structure

- main (inner) structure, fabricated from AA 7075-T7352
- transfers the loads to the HH Double Bay Pallet.
- main structure is 155 mm high and is made from a single part
- electronics box is mounted inside, remaining subsystems mounted on the structure itself.
- connectors and harness to the outside are routed via feed through in the structure

Payload Interface Structure

- Payload Interface Structure, fabricated from AA 7075-T7351
- interface between the lower part of the ESAJECT system (main structure) and the payload
- houses the payload-side part of the pot core based power and data transfer system
- keyed to provide for correct installation on the main structure
- contact surfaces of the separation interface plates with the marman band will be coated with NiFlor (Ni coating with PTFE)

Structures

Outer Structure

- outer structure is actually a non-load bearing cover mounted to the retraction spring brackets
- provides for installation of the Multilayer Insulation (MLI) thermal blanke
- in two sections, any of which may be removed without disturbing the payload

Ejection spring assy

- 8 spring assemblies equally spaced around the perimeter of main structure
- separation spring cold coiled stainless steel (AISI 301)
- push rod stainless steel (AISI 431)
- bushing vespel
- guide and housing
- nominal ejection velocity 0.8 m/s, min.0.3 m/s in case of spring failure
- stroke pre-determined prior to integration system
- spring assemblies initial force within +/-7.5%.

Marman Clampband

- two nickel-alloy bands (Ni 718) with three floating Aluminium-alloy clamps on each side of the two bands
- pre-tensionmonitored through redundant sets of strain gauges
- coated with XYLAN 1010 dry lubricant
- clamp band halves held in place by two pyrotechnically operated
 Separation Bolts which are set 180 degrees apart
- Separation of either bolt will release the clamp and allow the payload to be ejected

Separation Bolt

separation bolt

- pyrotechnically initiated separation bolts
- energy for actuation provided by NASA Standard Initiator (NSI)-actuated booster cartridge
- "velocity piston" design, uses the kinetic energy of the piston to effect separatio

debris capture device

- design derived from a concept first used on ESA's ERS-1 satellite
- four silicon rubber membranes separated with spacers
- Each membrane has a 90 degree slit and they are set 90 degrees shifted in the assembled configuration

Retraction / Retain Mechanism VERHAERT

- set of spring loaded devices which pull the halves of the marman clamp band away after pyrotechnic operation
- respond quickly enough to prevent an asymmetric ejection
- prevent rebound and possible recontact with the ejecting payload (tyrap locking system)
- Each mechanism consists of 3 sets of springs attached on one side to the clamp band halve
- Each set of springs consists of a righthand and left-hand wound spring to avoid blocking or interference with adjacent springs.

Electronic Box

- stacked configuration located inside the main structure
- contains command and monitoring circuitry, including associated pyrotechnic circuitry
- box will interface through the standard Hitchhiker electrical interfaces

Data - Power Transfer System

- Contactless pot core system; jamming free
- connectors are ferrite pot cores, use electromagnetic induction to transmit the desired data and power
- make contact at the separation plane, thus half of the connector is on the payload side of the interface, and will be ejected as part of the satellite
- redundant sets of pot cores
- spring-loaded mechanism located in the upper part provides the necessary mechanical pressure between the two halves

Power - Data Transfer System

Data Transfer

- 16 bit bi-directional parallel data transfer
- redundant Manchester-coded serial data links using shift-registers for parallel/serial data conversion
- electronics based on commercially available CMOS Manchester Encoder-Decoder Chip per MIL-STD-1553.
- Independent encoder-decoder sections on the chip allow full duplex data communication
- data rate is 1 Mbit/sec, which corresponds to a transfer rate of 50 Kwords per second

Power Transfer

- galvanic isolation by DC/DC converter, powered via an Electromagnetic Interference (EMI) filter from the HH avionics port
- After the DC/DC converter, the PTS converts the output (28V) to the output on the satellite (28V @ 3A).

Operations

Switch panel

- complete commanding for pyrotechnic fire given to the crew via the SSP interface
- Four switches located on the Aft Deck Switch Panel are used for the ejection (Pré-Arm, Arm, Fire 1 and Fire 2)
- Any combination of three switches out of four will initiate the ejection, the fourth switch is used for redundancy
- status of the 3 independent inhibits is indicated by the PRE-ARM and ARM indicators.

Project status - Planning

- Esaject is built according the protoflight philosophy
- phase B, major activities was the evaluation of the ejection trajectory
- dynamic analysis performed with DCAP and verified by ejection tests on a mechanical breadboard and high-speed camera recording
- flight model currently under integration and qualification testing
- Esaject will go to NLR for system integration and testing with Sloshsat, after which it will be ready for shipment to GSFC for integration on the Hitchhiker.
- Esaject with Sloshsat (STOF) is planned to fly on the Hithchiker TAS-03 mission (in 2000 2002 time frame).